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Abstract 
 Flat plates are widely used in Reinforced Concrete structures. To evaluate the lateral stiffness 
of a flat plate system, the contributing slab width needs to be defined. In this paper, a model that 
utilizes grillage analysis is proposed to predict the nonlinear lateral behaviour of flat plate 
structures. The model is utilized to conduct a parametric study to evaluate the effective slab width 
contributing to the lateral stiffness of residential interior flat plate connections. The studied 
parameters are span length, bay width, column dimensions, and level of column axial load. Both 
gravity load designed frames and moment resisting frames are analysed. The effect of the 
material safety factors is assessed by conducting two sets of analyses using nominal material 
properties and factored material properties. Equations for estimating the effective slab width 
contributing to the lateral stiffness of the system are proposed. 
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1. Introduction 
Reinforced concrete (RC) flat slabs simplify the construction process and reduce the overall 

building height. The National Building Code of Canada [1] allows resisting the lateral loads 
using moment frames composed of building columns and the flat plates of the different floors. 
This allowance is limited to low and moderate seismic zones and a maximum building height of 
15 m. For other cases, a stiffer lateral force resisting system such as shear walls must be 
introduced. The flat plate system deforms laterally either as part of a moment resisting frame or 
as part of a building. Estimation of these deformations requires knowledge of the flat plate 
system stiffness. 

Modelling of flat plates using shell elements to predict their seismic behaviour is 
cumbersome due to both material and geometric nonlinearities. When subjected to service gravity 
loads, flat plates behave within the elastic range. They can be modelled using shell elements or 
beam elements (grillage analysis). O’Brien and Keogh [2] discussed the method of modelling a 
slab by grids of beam elements to predict its elastic behaviour. Two assumptions related to thin 
plate theory are made: (1) the depth of the slab remains unchanged, and thus points across the 
slab thickness deflect vertically by exactly the same amount as points directly above or below 
them (the assumption is based on the fact that strains in the thickness direction are generally 
small and have negligible effect on the overall behaviour of the slab) and (2) the deflection of the 
slab is mainly caused by flexural stresses (effect of shear distortion is ignored). The validity for 
this method for non-linear analysis was not examined. 

A common and practical method for seismic analysis of flat plate systems involves analysing 
two-dimensional frames. The beam elements of these frames represent an effective slab width, 
which is critical in defining the stiffness of the slab. The Canadian standard for designing 
concrete structures [3] specifies an effective slab width factor ( ) of 0.2. The Slab effective 
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width is equal to   times the bay width (B). Based on elastic analysis, Pecknold [4] presented   
values for typical interior panels as a function of the column dimension in the span direction (c1), 
B, and the span length (L). Based on a limited number of experimental tests, Luo and Durrani [5] 
proposed Eq. (1) to estimate   corresponding to the total unbalanced moment resulting from 
lateral loads. They also proposed a reduction factor (χ), Eq. (2), to account for the effect of 
gravity loads. Their equation did not account for the effects of column axial load and 
reinforcement ratio. Eq. (1) is unsuitable for estimating the slab lateral stiffness as it corresponds 
to the total unbalanced moment. 
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Where gV  Direct shear force due to gravity loads, cA  Area of the critical punching shear 
section, and '

cf Compressive strength of concrete. 
Hwang and Moehle [6] proposed Eq. (3) to calculate effective slab width ( B ) for uncracked 

slab section based on test results of a flat plate frame. To account for stiffness reduction due to 
cracking of concrete, B estimated by Eq. (3) is multiplied by the reduction factor (  ), proposed 
in Eq. (4), that was based on test results of the same flat plate frame. 
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Where, LL  service live load, psf 
Grossman [7] proposed Eq.  (5) to calculate effective slab width ( B ) based on test results of a 
flat plate frame. 
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Where, BKBBK dd 5.02.0    
dK  factor considering degradation of stiffness of slabs at various lateral load levels 

       = 1.1 for 0.125% drift, 1.0 for 0.25% drift, 0.8 for 0.5% drift, and 0.5 for 1% drift 
2c  column dimension in bay direction  
d effective depth of slab 
h slab thickness 

This paper examines the use of grillage analysis to predict the nonlinear seismic behaviour of flat 
plates. It then provides a comprehensive parametric study for interior residential flat plate 
connections. It is assumed that these connections are designed according to current design 
standards, and thus shear failure is excluded. Results from this study are used to propose new 
effective width formulas suitable for calculating the slab lateral stiffness. 
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2. Grillage Model 
 

The slab is modelled using a grid of 3D inelastic beam elements. Each beam element 
represents the concrete and reinforcing bars in a width of the slab equal to the spacing between 
the elements. Columns are represented using 3D inelastic beam-column elements. The effect of 
shear deformations on the results is insignificant as compared to flexural deformations [2], and 
thus is neglected. Spacing between the beam elements depends on the torsional behaviour of the 
slab [2]. The torsional constant per unit width of any thin plate is twice the second moment of 
area per unit width. To maintain this ratio, a grid spacing of about 1.25 times the depth of slab 
should be used. O’Brien and Keogh [2] indicated that this spacing might be impractical and can 
be increased the up to three times the slab depth without affecting the solution accuracy. The 
torsional behaviour of slabs without shear reinforcement is expected to be linear up to failure, and 
thus the torsion rigidity was assumed equal to the elastic value. 
Fiber modelling approach was employed to represent the distribution of material nonlinearity 
along the length and cross-section of each member. The sectional stress-strain state of the 
elements was obtained through the integration of the nonlinear uniaxial stress-strain response of 
the individual fibers in which the section was subdivided. 
Concrete was modelled using the uniaxial nonlinear constant confinement model of Martinez-
Rueda and Elnashai [8]. The constant confining pressure provided by the lateral transverse 
reinforcement was incorporated through the rules proposed by Mander et al. [9]. The parameters 
that define the model are: concrete compressive strength ( '

cf ), concrete tensile strength ( tf ), 
strain at peak stress ( o ), and confinement factor ( ck ). A uniaxial bilinear stress-strain model was 
used to model the reinforcing bars. The parameters defining the model are: the modulus of 
elasticity ( s ), yield strength ( yf ), and strain hardening parameter (  ). 
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Shear failure is excluded as it is assumed that slabs are designed according to current design 
standards. Flexural failure occurs when the unconfined concrete of the slab reaches its crushing 
strain that ranges between 0.003 and 0.004 [10].  
The proposed technique for modelling a flat plate using grillage analysis is validated using the 
results of two experiments by Robertson and Durrani [11]. The experiments represent an isolated 
interior (8I) and an edge (9E) flat plate slab-column connection with slab dimension of 2895.6 x 
1981.2 and 1447.8 x 1981.2 mm, respectively. SeismoStruct computer program [12] is utilized to 
conduct the non-linear analysis. The test setup is shown in Fig. 1. The 254 mm square column is 
hinged at its base. Roller supports are provided at the edges of the slabs. Slab thickness, column 
height, column reinforcement, and column ties were 114.3 mm and 1420 mm, 8-22 mm bars, and 
10 mm bars spaced at 76 mm, respectively. Properties of concrete and reinforcing bars are given 
in Table 1. Grid spacing was chosen as 241.3 mm and 247.65 mm along the longitudinal and 
transverse directions, respectively. The grid models of slabs of specimens (8I) and (9E) are 
shown in Fig. 2. The notations given for each beam element corresponds to its properties as 
summarized in Table 2. Point loads were applied at each node of the grid to model the gravity 
load of the slab. Column self-weight was applied at the end node of the column element. Static 
pushover analyses were then performed by incrementally increasing the lateral deformation at the 
location of the lateral load P. 
Comparisons between the analytical lateral load-drift curves and the experimental one are shown 
in Fig. (3). It is clear that the analytical model was able to accurately predict behaviour of the 
tested slabs up to failure. 
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3. Nominal and Factored Lateral Stiffness of a Flat Plate System 
 

The validated grillage analysis is used to conduct a parametric study to evaluate the effective 
width that can be used to estimate the nominal and factored stiffness of a flat plate system. Two 
types of connections are considered; connections designed for gravity loads and those designed 
for lateral loads. Connections similar to the one shown in Fig. 1 are designed and investigated. 
The considered geometric parameters, which have significant effect on the effective slab width, 
are: span length, bay width, and column dimension in the span direction. Values for the 
considered parameters are shown in Table 3. The story height is taken as 3 m. While varying one 
geometric parameter, the other two parameters are assumed to remain constant at the mean value. 
The variation of the column axial load from floor to floor was considered by designing 
connections with different column axial loads. Nominal and factored ratios of column axial loads 

relative to that of the column supporting one storey 


1P
P  and 


1f

f
P
P  are shown in Table 3. 

Compressive strength of concrete and yield strength of steel are taken as 25 and 400 MPa, 
respectively. These values are widely used for flat plate structures.  
 
3.1 Gravity load design of flat plates 
 

The service dead load of the slab is assumed to be composed of the self-weight of the slab 
and a uniform partition weight of 1 kPa. The service live loads are taken as 1.9 kPa and 1.0 kPa 
for the floor and roof to represent residential buildings. The slab of each connection is designed 
for the gravity load composed of the dead and live loads using the direct design method of 
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Canadian standard for designing concrete structures [3]. The layouts of the top and bottom slab 
reinforcements are shown in Fig. 4 and their amounts are given in Table 4. 
 
3.2 Lateral load design of flat plates 
 

The slab-column connection of each configuration is modelled as an elastic 2D, Fig. 1, using 
the sectional properties recommended in Canadian standard for designing concrete structures [3]. 
The effective moment of inertia for the slabs, Ie was taken as 0.2 times the gross moment of 
inertia, Ig. For the column, Ie was taken equal to gc I  where c  is a factor to account for the 
effect of the column axial load, Ps and is given by Eq. (6).  

0.16.05.0 ' 
gc

s
c Af

P                                                                                               (6) 

Where, gA  gross area of column section   
The lateral load-inter-storey drift curve of a typical concrete building designed according to 
current seismic standards is shown in Fig. 5. The behaviour is expected to be elastic until a yield 
load of Vy. This is followed by plastic deformations until reaching failure. The maximum inter-
storey drift can be assumed to be 2.5% [1]. Based on the equal displacement principle, Vy can be 

calculated based on the corresponding elastic load Ve 


 
0RR

IVV
d

Ee
y . The importance factor IE, 

ductility factor Rd and over-strength factor R0 are taken as 1, 1.5 and 1.3 [1]. Service lateral loads 
corresponding to a drift of 2.5% in both directions are determined and used to design the slab. 
The reinforcement values are given in Table 5.  
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3.3 Columns 
 

Square columns of dimensions 600, 700, and 800 mm reinforced with 16-25M, 16-30M, and 
16-25M bars, respectively, are assumed for all connections. 10M ties are used for all columns. 
Their spacing is 375 mm for the 600 mm and 800 mm columns and 475 mm for the 700 mm 
column. The strong column-weak slab requirement is satisfied for all connections. 
 
3.4 Analytical modelling and results 
 

SeismoStruct computer program [12] is used to model each connection using the proposed 
grillage method. A grid spacing of 250 mm was used for both 64  m and 66  m slabs. For 

68  m slab, the grid spacing was increased to 333.33 mm. Gravity loads are first applied and 
then static pushover analysis was performed until failure. Failure was defined by reaching a 
concrete strain of 0.0035 [3]. The lateral stiffness of the connections shown in Table 3 is 
investigated in this section. Effect of drift level on effective slab width is also investigated. 
 
3.4.1 Analytical results 
 

Typical lateral load-drift curves corresponding to nominal and factored material properties 

and different axial load ratios are shown in Figs. 6a and 6b. Figure 6a shows that varying 
1P

P  

from 14 to 1 increases the ultimate lateral load corresponding to nominal material properties from 
25 kN to 50 kN for GL flat plates and 50 kN to 100 kN for MRF flat plates. The corresponding 
increase considering factored material properties (Fig. 6b) is from 12.50 kN to 43.75 kN for GL 
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flat plates and from 37.5 kN to 75 kN for MRF flat plates. These curves maintain constant slope 
until yield points that correspond to a drift of about 0.5%. A flat plateau follows this until a drift 
of 2.5% is reached. MRF flat plates have higher reinforcement ratios as compared to GL flat 
plates. This resulted in an increase in their lateral stiffness as compared to GL flat plates. The 
nominal and factored effective slab width factor ( n  and r ) that correspond to drift levels of 
0.5%, 1.5% and 2.5% are calculated for all considered connections. This is achieved by applying 
the load corresponding to drift levels of 0.5%, 1.5%, and 2.5% to a 2D elastic frame model and 
varying the slab width until matching drifts are achieved. Nominal and factored effective slab 
width factors are shown in Table 6. For the considered cases, n  and r  were found to vary 
from 0.012 to 0.282 and from 0.008 to 0.223, respectively. 

 
3.4.2 Discussion of analytical results 
 

Variations of nominal effective slab width factors with span length, bay width and column 
dimension at different axial load ratios and drift levels for GL and MRF flat plates are shown in 
Figs. 7a-7c at 0.5% drift. These curves show that the nominal effective slab width factors 
decrease as the axial load of column increases for GL and MRF flat plates. The factors for MRF 
flat plates are greater than those for GL flat plates. This can be referred to the delay in yielding 
and the increase of the lateral stiffness of the MRF flat plate because of its higher reinforcement 
ratio.  

Fig. 7a shows that n  vary from 0.052 to 0.193 for GL flat plates and 0.095 to 0.266 for 
MRF flat plates as the span length changes from 4 m to 8 m. This is likely due to increase in the 
top reinforcement ratio with the increase of the span length 
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Fig. 7b shows that n  vary from 0.190 to 0.065 for GL flat plates and 0.282 to 0.101 for 
MRF flat plates as the bay width changes from 4 m to 8 m. Increasing the bay width increases 
gravity moments and eventually the top reinforcement ratio. 

Fig. 7c shows that n  vary from 0.118 to 0.063 for GL flat plates and 0.156 to 0.098 for 
MRF flat plates as the column dimension changes from 600 mm to 800 mm. Column dimensions 
are found to have minor effects on n  for GL and MRF flat plates at a particular axial load ratio.  

Variations of nominal effective slab width factors with span length, bay width and column 

dimension at different drift levels for GL and MRF flat plates are shown in Figs. 8a-8c at 1
1
P

P . 

These curves show that the effective width factors decrease as the level of drift increase for MRF 
and GL flat plates due to the gradual reduction of lateral stiffness of flat plate system. 

Fig. 8a shows that n  vary from 0.028 to 0.193 for GL flat plates and 0.044 to 0.266 for 
MRF flat plates as the span length changes from 4 m to 8 m. Fig. 8b shows that n  vary from 
0.190 to 0.032 for GL flat plates and 0.282 to 0.044 for MRF flat plates as the bay width changes 
from 4 m to 8 m.  

Fig. 8c shows that n  vary from 0.032 to 0.118 for GL flat plates and 0.044 to 0.156 for 
MRF flat plates as the column dimension changes from 600 mm to 800 mm. Column dimensions 
are found to have minor effects on n  for GL and MRF flat plates at a particular axial load ratio.  
 
3.5 Effective slab width 
 

Using the calculated effective slab width factor suitable for lateral stiffness, two expressions 
are developed to estimate n  and r  for different configurations. It is found that the effective 



12 
 

width factor is proportional to parabolic functions of the axial load of column 



1P

P , drift level 

(D), span length (L), and bay width (B), respectively. This led to assuming that effective slab 
width factor    is equal to the following expression. 
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The values of A1 through A12 were determined using regression analysis such that the difference 
between the analytical values for   and the values determined from Eq. (7) is minimized. The 
expressions to estimate n  for GL and MRF are given by Eqs. (8) and (9), respectively. r  can 
be estimated by multiplying n  by 0.73 and 0.79 for GL and MRF flat plates, respectively. 
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D = Drift (%) 
L = span length (m) 
B = bay width (m) 
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The predicted values by Eqs. (8) and (9) are compared with analytical results in Tables 7 and 
8, respectively. The comparisons are also shown in Fig. 9. It shows minor deviation of analytical 
results from the predicted values of equations (8) and (9) (deviation of 038.0 ). 

The predictions of Eq. (8) are compared with analytical models that were based on 
experimental results [6, 11, 13, 14, 15, 16]. The comparison is shown in Table 9. Maximum 
deviation of Eq. (3) from Eq. (8) is -0.105 for specimen b3 by Hwang and Moehle [6]. On the 
other hand, maximum deviation of Eq. (5) from Eq. (8) is 0.105 for specimen 3 by Pan and 
Moehle [13].  

 
4. Conclusion 
 
In this paper, the use of grillage analysis to predict the nonlinear seismic behaviour of flat plates 
is explained and validated using available experimental results. A parametric study is then 
conducted to evaluate the effective slab width required to calculate the lateral stiffness 
corresponding to nominal and factored material properties for different spans, bay widths, 
column dimensions, column axial loads, and drift levels. Two sets of flat plate frames are 
designed. They represent flat plate structures designed for gravity loads and horizontal loads. 
Each structure is modelled using grillage analysis and is subjected to an increasing lateral load. 
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The nominal and factored effective slab width factors are found to increase with the increase of 
flat plate span and decrease with the increase of bay width. Column dimensions are found to have 
minor effects on their values. They are also found to decrease as the axial loads of column and 
levels of drift increase. GL flat plates had smaller values as compared to MRF flat plates. 
Expressions for nominal and factored effective slab width factors are proposed. Their predictions 
are validated using available experimental results and found to be adequate. Nominal and 
factored effective slab width factors calculated in this study are applicable to the range of 
parameters considered and care should be taken when using them for other cases. 
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Table 1: Properties of concrete and reinforcement (Robertson and Durrani, 1990). 
 

Materials Properties Slab Column 
Concrete Compressive strength (MPa) 

Tensile strength (MPa) 
Strain at peak stress (mm/mm) 

Confinement factor 

39.3 
2.068 
0.002 
1.00 

39.3 
2.068 
0.002 
1.23 

Reinforcement Modulus of elasticity (MPa) 
Yield strength (MPa) 

Strain hardening parameter 
203127 

525 
0.001 

 Table 2: Properties of beam elements modelling Robertson and Durrani (1990) tests. 
 

Designation Width (mm) Reinforcement area (mm2) 
Top Bottom 

S1 
S2 
S3 
S4 
S5 
S6 
S7 
S8 

123.825 
247.650 
247.650 
247.650 
120.650 
241.300 
241.300 
241.300 

22.44 
44.88 
64.52 

117.83 
20.14 
40.29 
65.61 
86.10 

23.56 
47.12 
47.12 
68.88 
20.16 
40.33 
40.33 
63.85 

 
 Table 3: Properties of considered connections 

 

Connection Span 
(m) 

Bay 
width 
(m) 

Square 
Column 

dimension 
(mm) 

Slab 
thickness 

(mm) 
Nominal axial 
load ratio, 

1P
P  

Factored axial 
load ratio, 

1f

f
P
P  

C1 
C2 
C3 
C4 
C5 
C6 
C7 

4 
6 
8 
6 
6 
6 
6 

6 
6 
6 
4 
8 
6 
6 

700 
700 
700 
700 
700 
600 
800 

200 
200 
270 
200 
270 
200 
200 

1 7 14 1 7 14 
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Table 4: Top and bottom reinforcements of connections designed for gravity load only. 
 

Connection L 
(m) 

B 
(m) 

L1 (m) 
B1 (m) As1 As2 As3 As4 As5 

C1 4 6 3 2 3-10M@200 
mm 

10M@200 
mm 

10M@250 
mm 

10M@250 
mm 

10M@250 
mm 

C2 6 6 4 3 3-15M@250 
mm 

15M@250 
mm 

15M@500 
mm 

10M@200 
mm 

10M@250 
mm 

C3 8 6 6 3 3-15M@170 
mm 

15M@170 
mm 

15M@370 
mm 

15M@300 
mm 

15M@370 
mm 

C4 6 4 4 2 3-10M@135 
mm 

10M@135 
mm 

10M@250 
mm 

10M@250 
mm 

10M@250 
mm 

C5 6 8 4 3 3-15M@225 
mm 

15M@225 
mm 

15M@370 
mm 

15M@370 
mm 

15M@370 
mm 

C6 6 6 4 3 3-15M@245 
mm 

15M@245 
mm 

15M@500 
mm 

10M@195 
mm 

10M@250 
mm 

C7 6 6 4 3 3-15M@250 
mm 

15M@250 
mm 

15M@500 
mm 

10M@205 
mm 

10M@250 
mm 

 
 Table 5: Top and bottom reinforcements of connections designed for gravity and lateral loads. 
 

Connection L 
(m) 

B 
(m) 

L1 (m) 
B1 (m) As1 As2 As3 As4 As5 

C1 4 6 3 2 5-20M@135 
mm 

20M@135 
mm 

15M@500 
mm 

15M@155 
mm 

15M@500 
mm 

C2 6 6 4 3 7-20M@125 
mm 

20M@125 
mm 

15M@500 
mm 

15M@200 
mm 

10M@250 
mm 

C3 8 6 6 3 9-20M@105 
mm 

20M@105 
mm 

15M@370 
mm 

15M@215 
mm 

15M@370 
mm 

C4 6 4 4 2 5-20M@140 
mm 

20M@140 
mm 

15M@500 
mm 

15M@210 
mm 

15M@500 
mm 

C5 6 8 4 3 9-20M@105 
mm 

20M@105 
mm 

15M@370 
mm 

15M@155 
mm 

15M@370 
mm 

C6 6 6 4 3 7-20M@130 
mm 

20M@130 
mm 

15M@500 
mm 

15M@205 
mm 

10M@250 
mm 

C7 6 6 4 3 7-20M@120 
mm 

20M@120 
mm 

15M@500 
mm 

15M@195 
mm 

10M@250 
mm 
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Table 6: Nominal and factored effective slab width factors ( n  and r ) for different 
connections. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Connection 
1P

P  
1f

f
P
P  Flat 

plate 
system 

n  r  
Drift (%) Drift (%) 

0.5 1.5 2.5 0.5 1.5 2.5 

C1 
1 1 GL 

MRF 
0.078
0.120 

0.039
0.061 

0.028  
0.045 

0.057 
0.095 

0.028 
0.048 

0.020 
0.035 

7 7 GL 
MRF 

0.065 
0.108 

0.028  
0.048 

0.019  
0.033 

0.047 
0.085 

0.020 
0.038 

0.013 
0.026 

14 14 GL 
MRF 

0.052  
0.095 

0.021  
0.039 

0.012  
0.023 

0.037 
0.075 

0.153 
0.031 

0.008 
0.018 

C2 
1 1 GL 

MRF 
0.117 
0.155 

0.055  
0.074 

0.032  
0.044 

0.085 
0.122 

0.040 
0.058 

0.023 
0.035 

7 7 GL 
MRF 

0.090 
0.128 

0.039  
0.056 

0.023  
0.034 

0.065 
0.101 

0.028 
0.044 

0.016 
0.027 

14 14 GL 
MRF 

0.065  
0.101 

0.025  
0.040 

0.015  
0.024 

0.047 
0.080 

0.018 
0.032 

0.010 
0.019 

C3 
1 1 GL 

MRF 
0.193 
0.266 

0.082  
0.114 

0.048  
0.067 

0.140 
0.210 

0.059 
0.090 

0.035 
0.053 

7 7 GL 
MRF 

0.167 
0.236 

0.067  
0.095 

0.039  
0.056 

0.121 
0.186 

0.048 
0.075 

0.028 
0.044 

14 14 GL 
MRF 

0.143 
0.210 

0.055  
0.082 

0.032  
0.049 

0.104 
0.166 

0.040 
0.065 

0.023 
0.039 

C4 
1 1 GL 

MRF 
0.190 
0.282 

0.092  
0.137 

0.055  
0.082 

0.138 
0.223 

0.067 
0.108 

0.040 
0.065 

7 7 GL 
MRF 

0.160 
0.250 

0.071  
0.111 

0.042  
0.066 

0.116 
0.197 

0.051 
0.088 

0.030 
0.052 

14 14 GL 
MRF 

0.132 
0.220 

0.054
0.091 

0.032
0.054 

0.096 
0.174 

0.039 
0.072 

0.023 
0.043 

C5 
1 1 GL 

MRF 
0.105 
0.145 

0.049  
0.069 

0.036  
0.051 

0.076 
0.114 

0.035 
0.054 

0.026 
0.040 

7 7 GL 
MRF 

0.090 
0.127 

0.039  
0.056 

0.026  
0.038 

0.065 
0.100 

0.028 
0.044 

0.018 
0.030 

14 14 GL 
MRF 

0.076 
0.112 

0.030
0.045 

0.018  
0.027 

0.055 
0.088 

0.021 
0.035 

0.013 
0.021 

C6 
1 1 GL 

MRF 
0.118 
0.156 

0.056  
0.075 

0.032  
0.044 

0.086 
0.123 

0.040 
0.059 

0.023 
0.035 

7 7 GL 
MRF 

 0.091 
 0.128 

0.039  
0.056 

0.022  
0.033 

0.066 
0.101 

0.028 
0.044 

0.016 
0.026 

14 14 GL 
MRF 

0.066 
0.101 

0.026  
0.040 

0.015  
0.024 

0.048 
0.080 

0.018 
0.032 

0.010 
0.019 

C7 
1 1 GL 

MRF 
0.116 
0.153 

0.056
0.074 

0.033  
0.044 

0.084 
0.121 

0.040 
0.058 

0.024 
0.035 

7 7 GL 
MRF 

0.090 
0.126 

0.038
0.054 

0.023  
0.033 

0.065 
0.099 

0.027 
0.043 

0.016 
0.026 

14 14 GL 
MRF 

0.063 
0.098 

0.025  
0.039 

0.014
0.023 

0.045 
0.077 

0.018 
0.031 

0.010 
0.018 
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Table 7: Comparison of the predicted values of equation (8) and the analytical results. 
 

Connection 
1P

P  n  Eq. Deviation 
Drift (%) Drift (%) Drift (%) 

0.5 1.5 2.5 0.5 1.5 2.5 0.5 1.5 2.5 
C1 

1 
7 

14 
0.078 
0.065 
0.052 

0.039 
0.028 
0.021 

0.028 
0.019 
0.012 

0.085 
0.065 
0.052 

0.037 
0.028 
0.021 

0.022 
0.017 
0.012 

-0.007 
0.000 
0.000 

0.002 
0.000 
0.000 

0.006 
0.002 
0.000 

C2 
1 
7 

14 
0.117 
0.090 
0.065 

0.055 
0.039 
0.025 

0.032 
0.023 
0.015 

0.117 
0.089 
0.065 

0.051 
0.039 
0.028 

0.030 
0.023 
0.016 

0.000 
0.001 
0.000 

0.004 
0.000 
-0.003 

0.002 
0.000 
-0.001 

C3 
1 
7 

14 
0.193 
0.167 
0.143 

0.082 
0.067 
0.055 

0.048 
0.039 
0.032 

0.201 
0.153 
0.112 

0.087 
0.067 
0.049 

0.051 
0.039 
0.029 

-0.008 
0.014 
0.031 

-0.005 
0.000 
0.006 

-0.003 
0.000 
0.003 

C4 
1 
7 

14 
0.190 
0.160 
0.132 

0.092 
0.071 
0.054 

0.055 
0.042 
0.032 

0.213 
0.162 
0.119 

0.093 
0.071 
0.052 

0.055 
0.042 
0.030 

-0.023 
-0.002 
0.013 

-0.001 
0.000 
0.002 

0.000 
0.000 
0.002 

C5 
1 
7 

14 
0.105 
0.090 
0.076 

0.049 
0.039 
0.030 

0.036 
0.026 
0.018 

0.122 
0.093 
0.069 

0.053 
0.040 
0.030 

0.032 
0.024 
0.018 

-0.017 
-0.003 
0.007 

-0.004 
-0.001 
0.000 

0.004 
0.002 
0.000 

C6 
1 
7 

14 
0.118 
0.091 
0.066 

0.056 
0.039 
0.026 

0.032 
0.022 
0.015 

0.117 
0.089 
0.065 

0.051 
0.039 
0.028 

0.030 
0.023 
0.016 

0.001 
0.002 
0.001 

0.005 
0.000 
-0.002 

0.002 
-0.001 
-0.001 

C7 
1 
7 

14 
0.116 
0.090 
0.063 

0.056 
0.038 
0.025 

0.033 
0.023 
0.014 

0.116 
0.089 
0.065 

0.051 
0.038 
0.028 

0.030 
0.023 
0.016 

0.000 
0.001 
-0.002 

0.005 
0.000 
-0.003 

0.003 
0.000 
-0.002 

 Table 8: Comparison of the predicted values of equation (19) and the analytical results. 
 

Connection 
1P

P  n  Eq. Deviation 
Drift (%) Drift (%) Drift (%) 

0.5 1.5 2.5 0.5 1.5 2.5 0.5 1.5 2.5 
C1 

1 
7 

14 
0.120 
0.108 
0.095 

0.061 
0.048 
0.039 

0.045 
0.033 
0.023 

0.134 
0.108 
0.095 

0.059 
0.048 
0.039 

0.034 
0.028 
0.023 

-0.014 
0.000 
0.000 

0.002 
0.000 
0.000 

0.011 
0.005 
0.000 

C2 
1 
7 

14 
0.155 
0.128 
0.101 

0.074 
0.056 
0.040 

0.044 
0.034 
0.024 

0.155 
0.126 
0.101 

0.069 
0.056 
0.044 

0.041 
0.033 
0.026 

0.000 
0.002 
0.000 

0.005 
0.000 
-0.004 

0.003 
0.001 
-0.002 

C3 
1 
7 

14 
0.266 
0.236 
0.210 

0.114 
0.095 
0.082 

0.067 
0.056 
0.049 

0.266 
0.215 
0.172 

0.117 
0.095 
0.076 

0.070 
0.056 
0.045 

0.000 
0.021 
0.038 

-0.003 
0.000 
0.006 

-0.003 
0.000 
0.004 

C4 
1 
7 

14 
0.282 
0.250 
0.220 

0.137 
0.111 
0.091 

0.082 
0.066 
0.044 

0.309 
0.250 
0.201 

0.137 
0.111 
0.089 

0.082 
0.066 
0.053 

-0.027 
0.000 
0.019 

0.000 
0.000 
0.002 

0.000 
0.000 
-0.009 

C5 
1 
7 

14 
0.145 
0.127 
0.112 

0.069 
0.056 
0.045 

0.051 
0.038 
0.027 

0.157 
0.127 
0.102 

0.069 
0.056 
0.045 

0.041 
0.033 
0.027 

-0.012 
0.000 
0.010 

0.000 
0.000 
0.000 

0.010 
0.005 
0.000 

C6 
1 
7 

14 
0.156 
0.128 
0.101 

0.075 
0.056 
0.040 

0.044 
0.033 
0.024 

0.156 
0.126 
0.101 

0.069 
0.056 
0.044 

0.041 
0.033 
0.026 

0.000 
0.002 
0.000 

0.006 
0.000 
-0.004 

0.003 
0.000 
-0.002 

C7 
1 
7 

14 
0.153 
0.126 
0.098 

0.074 
0.054 
0.039 

0.044 
0.033 
0.023 

0.155 
0.126 
0.101 

0.069 
0.055 
0.044 

0.041 
0.033 
0.026 

-0.002 
0.000 
-0.003 

0.005 
-0.001 
-0.005 

0.003 
0.000 
-0.003 
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Table 9: Comparison of the predicted values of equation (8) with different models. 
 

Experiments Specimens L 
(m) 

B 
(m) 

c1 (mm) 1P
P  Drift 

(%) 
n  

Eq. 
(3) (5) (8) 

Pan and 
Moehle (1988) 3 3.65 3.65 274 

1 0.5 

0.208 0.280 0.175 
Robertson and 
Durrani (1990) 8I 2.89 

1.98 
1.98 
2.89 254 0.335 

0.203 
0.374 
0.238 

0.320 
0.283 

Farhey et al. 
(1993) 1 2.68 2.68 300 0.269 0.273 0.265 
Morrison and 
Sozen (1981) S1 1.82 1.82 305 0.362 0.332 0.411 
Hwang and 
Moehle (1993) b3 2.74 

1.82 
1.82 
2.74 244 0.348 

0.203 
0.400 
0.266 

0.343 
0.308 

Islam and Park 
(1976) 1 2.74 

2.28 
2.28 
2.74 229 0.267 

0.208 
0.310 
0.244 

0.298 
0.279 
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a. Interior connection (8I) b. Exterior connection (9E) 

 Fig. 1 Slab-column connection subjected to gravity and lateral loads 

1447.8 mm

990
.6 m

m

S1

S2

S2

S3

S4

S5 S6S6 S6 S6 S7 S8

Column locationTypical roller support

Figure 2.13 Grid model of quarter the slab of specimen 8I by 
Robertson and Durrani (1990).

 

Typical roller support

1447.8 mm

990
.6 m

m

S1

S2

S2

S3

S4
S5 S6S6 S6 S6 S7 S8

Column location

Figure 2.14 Grid model of half the slab of specimen 9E 
by Robertson and Durrani (1990).

 
Fig. 2 Grid model of a tested by Robertson and Durrani (1990) 

 
 

a. Quarter of specimen 8I b. half of specimen 9E 
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a. Specimen 8I b. Specimen 9E 
 

Fig. 3 Analytical and experimental lateral load-drift curves for specimens tested by 
Robertson and Durrani (1990) 

 
 
 
 

 
 

Top reinforcement Bottom reinforcement 
 Fig. 4 Reinforcement layout of a typical slab 
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  Fig. 5 Lateral load-inter-storey drift curve of a typical concrete building 

 Fig. 6a Nominal lateral load-drift curves of connection C1 

 Fig. 6b Factored lateral load-drift curves of connection C1 
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 a)Span length effect 

 b)Bay width effect 

 c)Column dimension effect 
 

Fig. 7 Variations of effective slab width factor for nominal stiffness at 0.5 % drift 
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 a)Span length effect 
 

 b)Bay width effect 
 

 c)Column dimension effect 
 

Fig. 8 Variations of effective slab width factor for normal stiffness at P/P1 = 1  
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a. Eq. 8 b. Eq. 9  

 
Fig. 19 Predictions of equations (8 and 9) as compared to the analytical results 
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